Tag Archives: Security

Shellshocked: 2014 The Year of the Superbugs

Broken Windows

It was announced this week that a 19 year old bug has been present in most of Microsoft’s Operating Systems (OS) dating back to Windows 95. The bug (in fact it appears to be a series of connected bugs) was present in server and clients OS’s and was still present in Microsoft’s most recent efforts Windows Server 2012 R2 and Windows 8.1. Not even the minimal, naturally hardened Server Core escaped its potentially fatal grasp. The flaw was in Microsoft implementation of Secure Sockets Layer (SSL) and Transport Layer Security (TLS), Schannel. It was uncovered by a team of IBM researchers, known by the excellent superhero esque handle of X-Force. X-Force’s Robert Freeman described what they had uncovered in a blog post on IBM’s Security Intelligence website.

In the post he highlights some of the take home points of this threat: It has been around since Internet Explorer (IE) 3, it allowed reliable execution of arbitrary code from a remote location, It sidestepped IE’s Enhanced Protected Mode, and even secure protocols such as HTTPS can be easily exploited with the proper knowhow. When you step back and look at some of these points the severity of the flaw is plain to see and explains why the bug, now being dubbed by some as WinShock has been given the maximum CVE severity rating of 10. CVE-2014-6321 states that WinShock has a low level of complexity to exploit the bug and that a massive amount of damage that can be done with it. Being able to execute arbitrary code without authentication and often with elevated privileges is a massive problem, it effectively compromises every part of an affected system, the effects of this bug could have been devastating, if an unprotected system is exploited by the wrong person (or organisation) then it is effectively game over, data is compromised, systems are hijacked nothing is safe. To Microsoft’s credit they had released a fix to the issue in this weeks patch Tuesday update, the same day that the vulnerability was made known to the public.

Heart Breaking

Amazingly WinShock isn’t the first major security flaw discovered in protocols designed to securely transport data across the network in 2014. In April, SSL and TLS were at fault again (its not clear if the WinShock bug is related) when the Heartbleed vulnerability was made public. Heartbleed compromised some of the most widely used security transport protocols in the world including OpenSSL, GnuTLS, and Apples Secure Transport. Untold numbers of systems were left wide open by WinShock and Heartbleed, if you have used a computer in the last few years you were almost certainly exposed to the undetected hidden threat posed by these security flaws. All of this goes to not only undermine the integrity of our data, but the integrity of our privacy, safety and trust in the systems designed to keep us safe.

Bashful

The computing industries annus horribilis doesn’t stop with WinShock and Heartbleed. In September yet another vulnerability with a CVE severity rating of 10, effecting millions of computers, and allowing for arbitrary code to be run from remote locations, was made public. This time it was a 25 year old vulnerability in the BASH shell (and its derivatives) that had a gaping hole in its security. In fact it wasn’t just one flaw, by the end there were six published vulnerabilities relating to BASH.

Dubbed Shellshock it exploited a feature that allowed unauthenticated environment variables to be exported to function definitions, trailing variables could have arbitrary code placed inside them, when BASH forks, the environment variables were written into memory and the code from the trailing variable executed. Shellshock was startling for a number of reasons, not only did it undermine the perceived security benefits of Linux systems, it was also very easy to exploit. The amount of devices left vulnerable was staggering, from servers, to clients, to phones and even smart washing machine, fridges, TVs and other smart devices. Shellshock had the potential to cause massive amounts of catastrophic damage to an incredibly diverse and large array of systems.

Within hours of Shellshock being publicly released there were detailed tutorials online on how to exploit the vulnerability, it wasn’t long until reports on how the bug had been exploited began to appear in the media. There were tales of Romanian Gangs and massive Botnets running riot all over the the internet. By late September security researchers at Incapsula reported that it had seen a rate of 725 attacks per hour relating directly to Shellshock.

What 2014 has taught us is that major security vulnerabilities have existed undetected for years, these vulnerabilities have affected the entire gamut of computing. The free software community, the open source software community and proprietary software vendors have all seen major flaws in their software exposed. It begs a few questions; what else is out there that we don’t know about? What other bugs are lurking deep in the code of the software that is present on our computers, our internet, our corporate infrastructures, our national infrastructures and just about every connected device we have come to take for granted? What dangers are lurking just around the corner? With Heartbleed, WinShock and Shellshock we may have gotten off lightly, each of these flaws were recognised and fixed in an extremely timely manner, the consequences could have been far worse if they had gotten into the wild before the good guys discovered them. That’s not to say that the consequences still may not be felt, they could just be in hibernation, backdoors waiting to be opened, time bombs ready to explode, and stolen or compromised data waiting to be exploited. Of course the doomsday scenario is an extreme one, but one that cannot be ignored.

Richard Stallman describes Shellshock as just a “blip”, hopefully he is right, hopefully all these bugs and others like them are just a series blips, the inevitable consequence of the growing pains associated with the incredible pace of technological advancement and the complacency of not checking old code thoroughly when implementing it in new systems. We can only hope that these “blips” do not turn into a constant tone, a tone that could signify the flat lining of people’s trust in modern computer networks.